Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720418

RESUMEN

Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.

2.
J Am Chem Soc ; 146(18): 12712-12722, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38655573

RESUMEN

Persistent chiral organic open-shell systems have captured growing interest due to their potential applications in organic spintronic and optoelectronic devices. Nevertheless, the integration of configurationally stable chirality into an organic open-shell system continues to pose challenges in molecular design. The π-extended skeleton incorporated in spiro-conjugated carbocycles can provide robust chiroptical properties and a significant stabilization of the excited and ionic radical states. However, this approach has been relatively less explored in the design of persistent organic open-shell systems. We report here the (S,S)-, (R,R)-, and meso-isomers of doubly spiro-conjugated carbocycles featuring flat and rigid carbon-bridged para-phenylenevinylene (CPV) of different conjugation lengths connected by two spiro-carbon centers, which we denote D-spiro-CPV for its quasi-dimeric structure. Our synthetic method based on a double lithiation cyclization approach enables facile production of D-spiro-CPV. D-spiro-CPVs exhibit circularly polarized luminescence (CPL) with high fluorescence quantum yields (ΦFL) resulting in a high CPL brightness of 21 M-1 cm-1 and also exhibit high thermal and photostability. The monoradical cation of D-spiro-CPV absorbing near-infrared light is notably persistent, exhibiting a half-life of 570 h under ambient conditions due to doubly spiro-conjugative stabilization. Theoretical and electrochemical studies indicate the radical cation of D-spiro-CPVs presents a non-Aufbau electron filling, exhibiting inversion of the energy level of the singly occupied molecular orbital (SOMO) and the highest (doubly) occupied molecular orbitals with the SOMO level even below the HOMO-1 level (double SHI effect). Our discoveries provide valuable insights into non-Aufbau molecules and the development of configurationally stable, optically active persistent radicals.

3.
Chemistry ; 29(27): e202300388, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36749878

RESUMEN

The electronic, optical, and solid state properties of a series of monoradicals, anions and cations obtained from starting neutral diradicals have been studied. Diradicals based on s-indacene and indenoacenes, with benzothiophenes fused and in different orientations, feature a varying degree of diradical character in the neutral state, which is here related with the properties of the radical redox forms. The analysis of their optical features in the polymethine monoradicals has been carried out in the framework of the molecular orbital and valence bond theories. Electronic UV-Vis-NIR absorption, X-ray solid-state diffraction and quantum chemical calculations have been carried out. Studies of the different positive-/negative-charged species, both residing in the same skeletal π-conjugated backbone, are rare for organic molecules. The key factor for the dual stabilization is the presence of the starting diradical character that enables to indistinctively accommodate a pseudo-hole and a pseudo-electron defect with certainly small reorganization energies for ambipolar charge transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...